Discovering Frequent Tree Patterns over Data Streams

نویسندگان

  • Mark Cheng-Enn Hsieh
  • Yi-Hung Wu
  • Arbee L. P. Chen
چکیده

Since tree-structured data such as XML files are widely used for data representation and exchange on the Internet, discovering frequent tree patterns over tree-structured data streams becomes an interesting issue. In this paper, we propose an online algorithm to continuously discover the current set of frequent tree patterns from the data stream. A novel and efficient technique is introduced to incrementally generate all candidate tree patterns without duplicates. Moreover, a framework for counting the approximate frequencies of the candidate tree patterns is presented. Combining these techniques, the proposed approach is able to compute frequent tree patterns with guarantees of completeness and accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequent Patterns Mining over Data Stream Using an Efficient Tree Structure

Mining frequent patterns over data streams is an interesting problem due to its wide application area. In this study, a novel method for sliding window frequent patterns mining over data streams is proposed. This method utilizes a compressed and memory efficient tree data structure to store and to maintain sliding window transactions. The method dynamically reconstructs and compresses tree data...

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Mining Frequent Co-occurrence Patterns across Multiple Data Streams

This paper studies the problem of mining frequent co-occurrence patterns across multiple data streams, which has not been addressed by existing works. Co-occurrence pattern in this context refers to the case that the same group of objects appear consecutively in multiple streams over a short time span, signaling tight correlations between these objects. The need for mining such patterns in real...

متن کامل

Mining maximal frequent itemsets from data streams

Frequent pattern mining from data streams is an active research topic in data mining. Existing research efforts often rely on a two-phase framework to discover frequent patterns: (1) using internal data structures to store meta-patterns obtained by scanning the stream data; and (2) re-mining the meta-patterns to finalize and output frequent patterns. The defectiveness of such a two-phase framew...

متن کامل

A Single-scan Algorithm for Mining Sequential Patterns from Data Streams

Sequential pattern mining (SPAM) is one of the most interesting research issues of data mining. In this paper, a new research problem of mining data streams for sequential patterns is defined. A data stream is an unbound sequence of data elements arriving at a rapid rate. Based on the characteristics of data streams, the problem complexity of mining data streams for sequential patterns is more ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006